345 research outputs found

    Massive non-natural proteins structure prediction using grid technologies

    Get PDF
    Background The number of natural proteins represents a small fraction of all the possible protein sequences and there is an enormous number of pr oteins never sampled by nature, the so called "never born proteins" (NBPs). A fundamental question in this regard is if the ensemble of natural proteins possesses peculiar chemical and physical properties or if it is just the product of contingency coupled to functional selection. A key feature of natural proteins is thei r ability to form a well defined three-dimensional structure. T hus, the structural study of NBPs can help to understand if natural protein sequences were selecte d for their peculiar properties or if they are just one of the possible stable and functional ensembles. Methods The structural characterization of a huge number of random proteins cannot be approached experimentally, thus the problem has been tackled using a computational approach. A large random protein sequences library (2 × 10 ^4 sequences) was generated, discarding amino acid sequences with significant simi larity to natural proteins, and the corresponding structures were predicted using Rosetta. Given th e highly computational demanding problem, Rosetta was ported in grid and a user friendly job submission environment was developed within the GENIUS Grid Portal. Protein structures generated were analysed in terms of net charge, secondary structure content, surface/volume ratio, hydrophobic core composition, etc. Results The vast majority of NBPs, according to the Rosetta mode l, are characterized by a compact three-dimensional structure with a high secondary structure content. Structure compactness and surface polarity are comparable to those of natural proteins, suggesting similar stability and solubility. Deviations are observed in α helix- ÎČ strands relative content and inydrophobic core composition, as NBPs appear to be richer in helical structure and aromatic amino acids with respect to natural proteins. Conclusion The results obtained suggest that the abil ity to form a compact, ordered and water-soluble structure is an intrinsic property of polypeptides. The tendency of random sequences to adopt α helical folds indicate that all-α proteins may have emerged ea rly in pre-biotic evolution. Further, the lower percentage of aromatic residu es observed in natural proteins has important evolutionary implications as far as tolerance to mutati ons is concerned

    Stereocontrolled synthesis of new iminosugar lipophilic derivatives and evaluation of biological activities

    Get PDF
    Iminosugars' similarity to carbohydrates determines the exceptional potential for this class of polyhydroxylated alkaloids to serve as potential drug candidates for a wide variety of diseases such as diabetes, lysosomal storage diseases, cancer, bacterial and viral infections. The presence of lipophilic substituents has a significant impact on their biological activities. This work reports the synthesis of three new pyrrolidine lipophilic derivatives O-alkylated in C-6 position. The biological activities of our iminosugars' collection were tested in two cancer cell lines and, due to the pharmaceutical potential, in the model yeast system Saccharomyces cerevisiae to assess their toxicity

    A stochastic model of the emergence of autocatalytic cycles

    Get PDF
    Autocatalytic cycles are rather common in biological systems and they might have played a major role in the transition from non-living to living systems. Several theoretical models have been proposed to address the experimentalists during the investigation of this issue and most of them describe a phase transition depending upon the level of heterogeneity of the chemical soup. Nevertheless, it is well known that reproducing the emergence of autocatalytic sets in wet laboratories is a hard task. Understanding the rationale at the basis of such a mismatch between theoretical predictions and experimental observations is therefore of fundamental importance. We here introduce a novel stochastic model of catalytic reaction networks, in order to investigate the emergence of autocatalytic cycles, sensibly considering the importance of noise, of small-number effects and the possible growth of the number of different elements in the system. Furthermore, the introduction of a temporal threshold that defines how long a specific reaction is kept in the reaction graph allows to univocally define cycles also within an asynchronous framework. The foremost analyses have been focused on the study of the variation of the composition of the incoming flux. It was possible to show that the activity of the system is enhanced, with particular regard to the emergence of autocatalytic sets, if a larger number of different elements is present in the incoming flux, while the specific length of the species seems to entail minor effects on the overall dynamics

    Sub-clinical effects of chronic noise exposure on vestibular system

    Get PDF
    Aim: to investigate the effect of chronic noise exposure on vestibular function of subjects without clinical evidence of vestibular disorders and with documented cochlear damage from noise. Subjects and methods: 25 patients with chronic noiseinduced hearing loss (NIHL) and without vestibular complaints (group A) and 25 matched controls with sensorineural hearing loss without noise exposure (group B), underwent audiological and vestibular test including caloric and cervical vestibular-evoked myogenic potentials tests (cVEMPs). Results: In subjects chronically exposed to noise, similarly to that of the auditory threshold, an increase in the evocation threshold of VEMPs has been documented, statistically significant (p<0,05) and independent of the performance of the auditory threshold. p1-n1 amplitude values showed a significant difference between group A and group B. No significant difference for p1-n1 latencies between the two groups was found. Conclusion: We have documented the possibility of vestibular lesion, along with cochlear damage, related to chronic acoustic trauma

    ANKRd44 gene silencing: a putative role in trastuzumab resistance in HER2-like breast cancer

    Get PDF
    Trastuzumab is an effective therapeutic treatment for Her2-like breast cancer; despite this most of these tumors develop resistance to therapy due to specific gene mutations or alterations in gene expression. Understanding the mechanisms of resistance to Trastuzumab could be a useful tool in order to identify combinations of drugs that elude resistance and allow a better response for the treated patients. Twelve primary biopsies of Her2+/hormone receptor negative (ER-/PgR-) breast cancer patients were selected based on the specific response to neoadjuvant therapy with Trastuzumab and their whole exome was sequenced leading to the identification of 18 informative gene mutations that discriminate patients selectively based on response to treatment. Among these genes, we focused on the study of the ANKRD44 gene to understand its role in the mechanism of resistance to Trastuzumab. The ANKRD44 gene was silenced in Her2-like breast cancer cell line (BT474), obtaining a partially Trastuzumab-resistant breast cancer cell line that constitutively activates the NF-kb protein via the TAK1/AKT pathway. Following this activation an increase in the level of glycolysis in resistant cells is promoted, also confirmed by the up-regulation of the LDHB protein and by an increased TROP2 protein expression, found generally associated with aggressive tumors. These results allow us to consider the ANKRD44 gene as a potential gene involved in Trastuzumab resistance

    Do Natural Proteins Differ from Random Sequences Polypeptides? Natural vs. Random Proteins Classification Using an Evolutionary Neural Network

    Get PDF
    Are extant proteins the exquisite result of natural selection or are they random sequences slightly edited by evolution? This question has puzzled biochemists for long time and several groups have addressed this issue comparing natural protein sequences to completely random ones coming to contradicting conclusions. Previous works in literature focused on the analysis of primary structure in an attempt to identify possible signature of evolutionary editing. Conversely, in this work we compare a set of 762 natural proteins with an average length of 70 amino acids and an equal number of completely random ones of comparable length on the basis of their structural features. We use an ad hoc Evolutionary Neural Network Algorithm (ENNA) in order to assess whether and to what extent natural proteins are edited from random polypeptides employing 11 different structure-related variables (i.e. net charge, volume, surface area, coil, alpha helix, beta sheet, percentage of coil, percentage of alpha helix, percentage of beta sheet, percentage of secondary structure and surface hydrophobicity). The ENNA algorithm is capable to correctly distinguish natural proteins from random ones with an accuracy of 94.36%. Furthermore, we study the structural features of 32 random polypeptides misclassified as natural ones to unveil any structural similarity to natural proteins. Results show that random proteins misclassified by the ENNA algorithm exhibit a significant fold similarity to portions or subdomains of extant proteins at atomic resolution. Altogether, our results suggest that natural proteins are significantly edited from random polypeptides and evolutionary editing can be readily detected analyzing structural features. Furthermore, we also show that the ENNA, employing simple structural descriptors, can predict whether a protein chain is natural or random

    Reference-Grade Genome and Large Linear Plasmid of Streptomyces rimosus : Pushing the Limits of Nanopore Sequencing

    Get PDF
    Streptomyces rimosus ATCC 10970 is the parental strain of industrial strains used for the commercial production of the important antibiotic oxytetracycline. As an actinobacterium with a large linear chromosome containing numerous long repeat regions, high GC content, and a single giant linear plasmid (GLP), these genomes are challenging to assemble. Here, we apply a hybrid sequencing approach relying on the combination of short- and long-read next-generation sequencing platforms and whole-genome restriction analysis by using pulsed-field gel electrophoresis (PFGE) to produce a high-quality reference genome for this biotechnologically important bacterium. By using PFGE to separate and isolate plasmid DNA from chromosomal DNA, we successfully sequenced the GLP using Nanopore data alone. Using this approach, we compared the sequence of GLP in the parent strain ATCC 10970 with those found in two semi-industrial progenitor strains, R6-500 and M4018. Sequencing of the GLP of these three S. rimosus strains shed light on several rearrangements accompanied by transposase genes, suggesting that transposases play an important role in plasmid and genome plasticity in S. rimosus. The polished annotation of secondary metabolite biosynthetic pathways compared to metabolite analysis in the ATCC 10970 strain also refined our knowledge of the secondary metabolite arsenal of these strains. The proposed methodology is highly applicable to a variety of sequencing projects, as evidenced by the reliable assemblies obtained. IMPORTANCE The genomes of Streptomyces species are difficult to assemble due to long repeats, extrachromosomal elements (giant linear plasmids [GLPs]), rearrangements, and high GC content. To improve the quality of the S. rimosus ATCC 10970 genome, producer of oxytetracycline, we validated the assembly of GLPs by applying a new approach to combine pulsed-field gel electrophoresis separation and GLP isolation and sequenced the isolated GLP with Oxford Nanopore technology. By examining the sequenced plasmids of ATCC 10970 and two industrial progenitor strains, R6-500 and M4018, we identified large GLP rearrangements. Analysis of the assembled plasmid sequences shed light on the role of transposases in genome plasticity of this species. The new methodological approach developed for Nanopore sequencing is highly applicable to a variety of sequencing projects. In addition, we present the annotated reference genome sequence of ATCC 10970 with a detailed analysis of the biosynthetic gene clusters

    Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: a randomised controlled trial (MEDEAS)

    Get PDF
    Dysregulated systemic inflammation is the primary driver of mortality in severe COVID-19 pneumonia. Current guidelines favor a 7-10-day course of any glucocorticoid equivalent to dexamethasone 6 mg·day-1. A comparative RCT with a higher dose and a longer duration of intervention was lacking

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF
    • 

    corecore